Translocation of molecular chaperones to the titin springs is common in skeletal myopathy patients and affects sarcomere function
نویسندگان
چکیده
Myopathies encompass a wide variety of acquired and hereditary disorders. The pathomechanisms include structural and functional changes affecting, e.g., myofiber metabolism and contractile properties. In this study, we observed increased passive tension (PT) of skinned myofibers from patients with myofibrillar myopathy (MFM) caused by FLNC mutations (MFM-filaminopathy) and limb-girdle muscular dystrophy type-2A due to CAPN3 mutations (LGMD2A), compared to healthy control myofibers. Because the giant protein titin determines myofiber PT, we measured its molecular size and the titin-to-myosin ratio, but found no differences between myopathies and controls. All-titin phosphorylation and site-specific phosphorylation in the PEVK region were reduced in myopathy, which would be predicted to lower PT. Electron microscopy revealed extensive ultrastructural changes in myofibers of various hereditary myopathies and also suggested massive binding of proteins to the sarcomeric I-band region, presumably heat shock proteins (HSPs), which can translocate to elastic titin under stress conditions. Correlative immunofluorescence and immunoelectron microscopy showed that two small HSPs (HSP27 and αB-crystallin) and the ATP-dependent chaperone HSP90 translocated to the titin springs in myopathy. The small HSPs, but not HSP90, were upregulated in myopathic versus control muscles. The titin-binding pattern of chaperones was regularly observed in Duchenne muscular dystrophy (DMD), LGMD2A, MFM-filaminopathy, MFM-myotilinopathy, titinopathy, and inclusion body myopathy due to mutations in valosin-containing protein, but not in acquired sporadic inclusion body myositis. The three HSPs also associated with elastic titin in mouse models of DMD and MFM-filaminopathy. Mechanical measurements on skinned human myofibers incubated with exogenous small HSPs suggested that the elevated PT seen in myopathy is caused, in part, by chaperone-binding to the titin springs. Whereas this interaction may be protective in that it prevents sarcomeric protein aggregation, it also has detrimental effects on sarcomere function. Thus, we identified a novel pathological phenomenon common to many hereditary muscle disorders, which involves sarcomeric alterations.
منابع مشابه
Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle.
Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of ...
متن کاملRoles of the nebulin and β-tropomyosin genes in nemaline myopathy
...............................................................................................8 INTRODUCTION.......................................................................................10 REVIEW OF THE LITERATURE....................................................................11 1 Skeletal muscle.........................................................................................
متن کاملKLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination
Maintenance of muscle function requires assembly of contractile proteins into highly organized sarcomeres. Mutations in Kelch-like protein 41 (KLHL41) cause nemaline myopathy, a fatal muscle disorder associated with sarcomere disarray. We generated KLHL41 mutant mice, which display lethal disruption of sarcomeres and aberrant expression of muscle structural and contractile proteins, mimicking t...
متن کاملUnfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
The elastic section of the giant muscle protein titin contains many immunoglobulin-like domains, which have been shown by single-molecule mechanical studies to unfold and refold upon stretch-release. Here we asked whether the mechanical properties of Ig domains and/or other titin regions could be responsible for the viscoelasticity of nonactivated skeletal-muscle sarcomeres, particularly for st...
متن کاملThe titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the mos...
متن کامل